Based on K. H. Rosen: Discrete Mathematics and its Applications.

Lecture 1: Propositional logic. Section 1.1

1 Propositional logic

A proposition is a declarative sentence (that is, a sentence that declares a fact) that is either true or false, but not both.

Example 1. "Clean up your room." is not a declarative sentence; hence, fails to be a proposition. On the other hand " $x+2=3$ for $x=5$ " is a proposition.

Definition 2. Let p be a proposition. The negation of p is denoted by $\neg p$, is the statement "It is not the case that p." The proposition $\neg p$ is read "not p." The truth value of the negation of $\neg p$, is the opposite of the truth value of p.

Example 3. For p : "I like my CSI 30 class", the negation $\neg p$ will be "I do not like the CSI 30 class" or "It is not the case that I like the CSI class".

Definition 4. Let p and q be propositions. The conjunction of p and q, denoted by $p \wedge q$, is the proposition " p and q ". The conjunction is true when both p and q are true and is false otherwise.

Definition 5. Let p and q be propositions. The disjunction of p and q, denoted by $p \vee q$, is the proposition " p or q ". The disjunction is false when both p and q are false and is true otherwise.

Example 6. For p : "I am a BCC student" and q : "I lived in the Bronx", we have:

$$
\begin{aligned}
& p \wedge q: \text { I am a BCC student and lived in the Bronx" } \\
& p \vee q: \text { I am a BCC student or lived in the Bronx". }
\end{aligned}
$$

The truth table for both $p \wedge q$ and $p \vee q$ are represented as:

p	q	$p \wedge q$
T	T	T
T	F	F
F	T	F
F	F	F

p	q	$p \vee q$
T	T	T
T	F	T
F	T	T
F	F	F

The truth table for the exclusive or $p \oplus q$ and the implication $p \rightarrow q$ are:

p	q	$p \oplus q$
T	T	F
T	F	T
F	T	T
F	F	F

$\left|\begin{array}{cc|c|}p & q & p \rightarrow q \\ \hline T & T & T \\ T & F & F \\ F & T & T \\ F & F & T\end{array}\right|$

Definition 7. Let p and q be propositions. The exclusive or of p and q, denoted by $p \oplus q$, is the proposition that is true when exactly one of p and q is true and is false otherwise.

Definition 8. Let p and q be propositions. The conditional statement $p \rightarrow q$ is the proposition "if p, then q." The conditional statement $p \rightarrow q$ is false when p is true and q is false, and true otherwise. In the conditional statement $p \rightarrow q, p$ is called the hypothesis (or antecedent or premise) and q is called the conclusion (or consequence).

Example 9. The proposition If "Juan has a smartphone, then $2+3=5$ " is true independently of the truth value of p : "Juan has a smartphone", since the conclusion $2+3=5$ is true. On the other hand the proposition "Juan has a smartphone, then $2+3=6$ " is true if (and only if) Juan does not have a smartphone, even though $2+3=6$ is false.

The proposition $q \rightarrow p$ is called the converse of $p \rightarrow q$. The contrapositive of $p \rightarrow q$ is the proposition $\neg q \rightarrow \neg p$. The proposition $\neg p \rightarrow \neg q$ is called the inverse of $p \rightarrow q$. We will see that of these three conditional statements formed from $p \rightarrow q$, only the contrapositive always has the same truth value as $p \rightarrow q$.

Example 10. What are the contrapositive, the converse, and the inverse of the conditional statement
"The home team wins whenever it is raining?" Because " q whenever p " is one of the ways to express the conditional statement $p \rightarrow q$, the original statement can be rewritten as:
"If it is raining, then the home team wins."
Consequently, the contrapositive of this conditional statement is:
"If the home team does not win, then it is not raining."
The converse is:
"If the home team wins, then it is raining."
The inverse is:
"If it is not raining, then the home team does not win."
Only the contrapositive is equivalent to the original statement.
Definition 11. Let p and q be propositions. The biconditional statement $p \leftrightarrow q$ is the proposition "p if and only if q." The biconditional statement $p \leftrightarrow q$ is true when p and q have the same truth values, and is false otherwise. Biconditional statements are also called bi-implications

p	q	$p \leftrightarrow q$
T	T	T
T	F	F
F	T	F
F	F	T

Questions

(a) Check that $p \rightarrow q$ is equivalent to $\neg p \vee q$.
(b) Show that the contrapositive of $p \rightarrow q$ has the same truth value as $p \rightarrow q$.

